

RAJARSHI SHAHU MAHAVIDYALAYA, LATUR (AUTONOMOUS)

AFFILIATED TO

SWAMI RAMANAND TEERTH MARATHWADA UNIVERSITY, NANDED

B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. THIRD YEAR(CBCS)

BOTANY – CURRICULUM

(MCQ + THEORY PATTERN)

w. e. f. JUNE, 2018

OBJECTIVES

- 1. To know the importance and scope of the discipline.
- 2. To inculcate interest in and love of nature with its myriad living forms.
- 3. To impart knowledge of Botany as the basic objective of Education.
- 4. To develop a scientific attitude to make students open minded, critical and curious.
- 5. To develop an ability to work on their own and to make them fit for the society.
- 6. To expose themselves to the diversity amongst life forms.
- 7. To develop skill in practical work, experiments, equipments and laboratory use along with collection and interpretation of biological materials and data.
- 8. To Make aware of natural resources and environment and the importance of conserving it.
- 9. To develop ability for the application of the acquired knowledge in the fields of life so as to make our country self reliant and self sufficient.
- 10. To Appreciate and apply ethical principles to biological science research and studies.
- 11. To enable the students to face NET, SET examinations.
- 12. To enable the students to face MPSC, UPSC and other competitive examinations successfully.

B. Sc. GENERAL (SEMESTER PATTERN)

B. Sc. Third YEAR(CBCS)

BOTANY – CURRICULUM

(MCQ + THEORY PATTERN)

Semester	Paper No.	Paper Title	Lectures/ Practicals	In Sem. Evaluatio	Marks End Sem. Evaluatio n	Total Marks	Credits
	IX	Plant Physiology and Metabolism	45	20	30	50	02
V	X	Plant Pathology-I/ Plant Biotechnology (DSE)	45	20	30	50	02
	Lab. Course V	Based on theory Paper – IX& X	24			50	02
	SEC-III	Fruits and Fruit Processing	45		50	50	02
	XI	Plant Biochemistry and Bioinformatics	45	20	30	50	02
VI	XII	Plant Pathology-II / Cytogenetics (DSE)	45	20	30	50	02
	Lab. Course VI	Based on theory Paper –XI& XII	24			50	02
	SEC-IV	Basics in Horticulture	45		50	50	02
					Total	400	16

Workload:

1. Theory: Three Lectures / Paper / Week.

2. Practical: One Practical (Three Lectures) / Batch / Week

RAJARSHI SHAHU MAHAVIDYALAYA,LATUR

B.Sc. Third Year Semester – V

(MCQ + Theory Pattern)

BOTANY

Theory Paper-IX: Plant Physiology and Metabolism

Periods – 45 Maximum Marks – 50

Objectives:

1. To understand the different physiological phenomenon of plants.

- 2. To understand the different metabolic processes in plants.
- 3. To understand the energy flow in plants.
- 4. To understand carbon cycle in plants.

UNIT-I: PLANT WATER RELATIONS (12 L)

- 1. Importance of water in plant life,
- **2. Different bio-physico-chemical phenomenon**-Permeability and its importance, definition of diffusion, osmosis (exosmosis, endosmosis) plasmolysis, imbibition.
- **3. Absorption of water-** Introduction, mechanism ofwater absorption (active and passive Theories
- **4. Ascent of sap-** Definition, mechanism of root pressure theory, capillary theory, imbibition and transpiration pull theories.
- 5. **Transpiration-** Definition, types, structure of stomata, mechanism of opening and closing of stomata (starch-sugar theory and K⁺ pump theory)

UNIT-II: PLANT GROWTH AND DEVELOPMENT (10 L)

I. Vegetative Growth:

1.Seed dormancy: Seed dormancy- Introduction, methods of breaking seed dormancy, factors affecting seed dormancy

- **2. Seed germination:**; Seed germination- types, factors affecting seed germination.
- 3. **Plant growth hormones:** Auxins, gibberellins, cytokinins, abscisic acide, Ethylene (only practical applications).
- **II. Reproductive Growth: Physiology of flowering:** Photoperiodism (long day plants, short day plants, day neutral plants),

UNIT-III: PHOTOSYNTHESIS AND PHOTORESPIRATION (13 L):

- **I. Introduction**, ultra structure of chloroplast, biogenesis of chloroplast, photosynthetic pigments, concepts of two Photo systems;
- II. Mechanism of photosynthesis:
 - 1. Light phase- Hill reaction, Cyclic and Non cyclic photophosphorylation.
 - **2. Dark phase** Calvin cycle (C3 pathway), Hatch and Slack cycle (C4 pathway) and Crassulacean acid metabolism (CAM), significance of photosynthesis;
- III. Photorespiration: Introduction, Glycolate metabolism (C2 cycle) significance.

UNIT-IV: RESPIRATION (10 L):

I. Introduction, ultra structure of mitochondria, respiratory quotient and its significance;

II. Types of respiration:

- 1. Aerobic respiration- Glycolysis, Kreb's cycle, Electron Transport System (oxidative phosphorylation), ATP structure and function.
- 2. Anaerobic respiration- Fermentation (alcoholic and lactic acid) significance of respiration.

SUGGESTED READINGS:

- 1. Gill P.S. (2000) Plant Physiology, S.Chand & Co. New Delhi
- 2. Verma V. (1995) Text book of Plant Physiology, Emkay Publication N.Delhi
- 3. Salisbury P.B. & W. Ross (1992) Plant Physiology , New York Pub. Co. California USA
- 4. Subhash Chandra Dutta (1992) Plant Physiology, Wiley Eastern, New Delhi
- 5. Shrivastava H.S.(2000) Plant Physiology, Rastogi Publication, Meerut
- 6. Shrivastava H.S. (1993) Elements of Biochemistry Rastogi Publication, Meerut

- 7. Rastogi (2000) Biochemistry Tata McGraw Hill, New York
- 8. Biochemistry by Mathews C.F. (2003) Addison Wesley, New Delhi
- 9. Jayaraman J. (1992) Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New Delhi

B.Sc. Third Year Semester – V

(MCQ + Theory Pattern)

BOTANY

Theory Paper-X: Plant pathology –I

Periods – 45 Maximum Marks – 50

Objectives:

- 1. To awaken the students about microbial world and the nature of diseases of plants.
- 2. To understand the principles and concept in plant pathology.
- 3. To understand the relationships between pathogens and plants.
- 4. To become familiar with terms and references used to diagnose plant disease.
- 5. To develop the awareness about the importance of plant disease in human life.
- 6. To learn the basic biology of major groups of plant pathogens.
- 7. To explain the concept of plant disease and disease pyramid.
- 8. To describe main modes of plant disease transmission.

UNIT-I: FUNDAMENTALS OF PLANT PATHOLOGY (10 L)

- 1. Scope, importance, history and advancement of plant pathology.
- 2. Classification of plant diseases on the basis of causal organism and symptoms.
- 3. Field and laboratory diagnosis- Isolation of plant pathogens from infected plant parts, soil and air.
- 4. Pure culture technique, Koch's postulates for pathogenicity.

UNIT-II: PLANT DISEASES-I (12 L)

Symptoms, causal organisms, disease cycle and control measures of:

- 1. Green ear of Bajra.
- 2. leaf spot of tomato.
- 3. Rust of Soybean.
- 4. Red rot of Sugarcane.

- 5. Angular leaf spot of cotton.
- 6. Yellow vein mosaic of Bhendi.

UNIT-III: PLANT DISEASES-II (13 L)

Symptoms, causal organisms, disease cycle and control measures of:

- 1. Ergot of Bajara,
- 2. Whip smut of Sugarcane,
- 3. Oil spot disease of pomegranate,
- 4. Leaf spot of Turmeric (Colletotrichum capsici)
- 5. Citrus canker.
- 6. Bunchy top of banana
- 7. Little leaf of Brinjal

UNIT-IV: PLANT DISEASE DEVELOPMENT (10 L)

- 1. Definition of disease, disease pyramid
- 2. Disease development- Mode of entry of pathogens (through stomata, wounds, root hairs and buds),
- 3. Factors affecting disease development- Temperature, moisture, wind and soil pH,
- 4. Dispersal of plant pathogens (by air, water, insects and animals)

SUGGESTED READINGS:

- 1.Pathak, Khatri, Pathak, 2003, Fundamentals of plant pathology, Agrios
- 2. Mehrotra, R.S. 1991, *Plant Pathology*, Tata Mc Graw Hill Co.Delhi
- **3. Chattergee, P.B.,** 1997, *Plant Protection Techniques*, Bharati Bhawan, Publ. Patana
- **4. Agrios, G.N.** 2006-*Plant Pathology*, Elsevier Academic Press.
- **5. Pandey, B.P.**2009, *Plant Pathology*, S.Chand Co.
- **6. Dickinson, M.**2008,-*Molecular Plant Pathology, Bios* Scientific Publishers, London
- **7. Trigiano, Windham and Windham,** 2003, *Plant pathology, Concepts and laboratory exercises.* CRC Press London
- **8. Gupta, G.P.,**2004, *Text book of plant diseases*, Discovery Publ. House, New, Delhi
- **9.** Aneja, K.R. 2001, Experiments in Microbiology, plant pathology, tissue culture and Mushroom production technology, New Age International Publishers.
- **10. Dubey, R.C., Maheshwari, D.K.** 2005, *Practical Micrbiology*, S. Chand & CO.
- 11. Singh, R.S. 2004, *Plant Diseases*, Oxford & IBH Publishing Co. Pvt. Ltd., Delhi.
- **12.** Rangaswami, G., Mahadevan, A., 2002, *Diseases of Crop plants of India*, Prantice Hall of India.

B.Sc. Third Year Semester – V BOTANY

Theory Paper- X: PLANT BIOTECHNOLOGY (DSE)

Periods – 45 Maximum Marks – 50

Objectives:

- 1. To understand the different phenomenon of Plant Biotechnology
- 2. To understand the different genetic engineering processes in plants.
- 3. To understand the gene transfer in plants.
- 4. To understand carbon cycle in plants.

Unit-I. Introduction to Biotechnology (10L)

- 1.1 Introduction
- 1.2 History of Biotechnology
- 1.3 Traditional and Modern Biotechnology
- 1.4 Global Impact and Current excitements of Biotechnology Health care,

Environment, genomics and proteomics.

- 1.5 Biotechnology in India and Global Trends
- 1.6 Achievements of Biotechnology-

Genetic Foods (GMO's), Prevention and Misused biotechnology, Biodiversity

conservation, Intellectual Property Rights and Protection- forms of protection,

Cryopreservation of plant stock cells and Gene bank

Unit-II. Genetic Engineering (12L)

- 2.1 Introduction
- 2.2 Brief history of G.E.
- 2.3 Molecular Tools of G.E.-Restriction endonuclease, DNA ligase, Alkaline Phosphatase, DNA modifying enzymes.
- 2.4 Steps and tools in G.E: Gel permeation, PAGE, SDS-PAGE, 2-D gel electrophoresis, spectroscopy, colorimeter,
- 2.5 Genetic engineering and human welfare-

Insulin, Genes for Vaccine,

DNA probe, Monoclonal antibodies, Hybridoma

Unit-III. Agricultural Biotechnology (10L)

3.1 Introduction

Bio fertilizers-Algal, Bacterial, Azolla, Frankia, Mycorrhizal with reference to Structure, Characterization, Mass production and application

- 3. 2Biotechnology of Biological Nitrogen Fixation-
- 3.2 Non symbiotic Nitrogen Fixation-Diazotrophs and their ecology, special features,

Mechanism of N₂ Fixation

3.4Symbiotic N₂ Fixation- establishment of symbiosis, factors affecting and mechanism of symbiotic N₂ Fixation

3.5 Genetics of Diazotrophs- Nod genes, Nif gene

Unit-IV.Plant Tissue Culture (8L)

- 4.1 Brief History
- 4.2 Plant protoplast culture
- 4.3 Somaclonal variation
- 4.4 Plant tissue culture in Forestry
- 4.5 Application of Tissue culture in GMO's, Plant pathology, Plant breeding, molecular farming
- 4.6 Nutritional quality (cyclodextrins, Vit. A, quality of seed protein, edible vaccines, edible antibodies, edible interferons)

Reference Books:-

- R. C. Dube(2008)- A Text Book of Biotechnology, S. Chand
- **P.K. Gupta-**Elements of Biotechnology

Satyanarayana-Biotechnology

Kalyan Kumar De-Plant tissue culture

Pal J.K. and Ghaskadabi S.S.(2008)- Fundamentals of Molecular Biology.

Verma and Agrawal- Molecular Biology

Devi P.2008-Principle and Methods of plant Molecular Biology, Biochemistry and Genetics Agrobios, Jodhpur, India.

Glick B.R. and Tompson J.E. 1993 Methods in Plant Molecular Biology and Biotechnology CRC Press Boca Raton, Florida.

Hall R.D. (Ed.)1999 Plant cell culture Protocol human press Inc., New Jersey, USA

Kumar H.D. 2002 A Text Book of Biotechnology 2nd Edn. Affiliated Easyt-West Press Private Ltd New Delhi.

Ramawat K.G. 2003 Plant Biotechnology, S. Chand & Co. Ltd .Ramnagar New Delhi.

Trivedi P.C.2000 Plant Biotechnology, Panima Publishing Carpation, New Delhi.

Rajdan- Plant tissue culture.

RAJARSHI SHAHU MAHAVIDYALAYA, LATUR

B.Sc. Third Year

Semester - V

BOTANY

Lab Course- VIII: PLANT BIOTECHNOLOGY (DSE)

Periods – 45 Maximum Marks – 50

Ptracticals:

- 1. Preparation and sterilization of the medium, slant preparation and inoculation-MS medium.
- 2-4. Micro propagation of Banana / Sugarcane/ Gerbera
- 5. Aseptic seed germination-legume seed
- 6. Study of different biofertilizers.
- 7. Isolation of protoplast.
- 8-9. Somatic Hybridization
- 10-12. PAGE, SDS-PAGE

B. Sc. Third Year Semester – V (MCQ + Theory Pattern) BOTANY

SEC -III: Fruits and Fruit Processing

Credits: 02

Marks: 50 Lectures: 45

_____<u>=</u>_____

Objectives:

- 1. To Develope skills and making the students become self-reliable and employable besides giving them an edge when they seek employment in other Government and private sectors.
- 2. To pass out of the college with their degrees, they also are equipped with additional skills to meet the challenges in future.
- 3. To know about various fruit product and their processes.
- 4. To gain knowledge about fruit nutritional value for health.
- 5. To know about various preservative techniques of fruits.

Unit I: A) Biology, Biochemistry, Nutrition, and Microbiology

- 1. Physiology and Classification of Fruits.
- 2. Biochemistry of Fruits and Fruit Products.

- 3. Flavor of Fruits and Fruit Products and their Sensory Qualities.
- 4. Microbiology of Fresh and Processed Fruits .
- 5. Nutritional Quality of Fruits.

B) Postharvest Handling and Preservation Technologies

- 1. Postharvest Storage Systems: Biology, Physical Factors, Storage, and Transport.
- 2. Freezing Preservation of Fruits.
- 3. Conventional Thermal Processing and Preservation.
- 4. Dehydration Preservation of Fruits.
- 5. Developments in Minimal Processing of Fruits.
- 6. Aseptic Processing and Packaging.
- 7. Food Additives in Fruit Processing.

Unit II: A) Processed Fruit Products and Packaging

- 1. Manufacturing Fruit Beverages and Concentrates.
- 2. Manufacturing Jams and Jellies.
- 3. Fresh-Cut Fruits.
- 4. Fruit and Fruit Products as Ingredients.
- 5. Developments in Packaging of Fresh Fruits and Fruit Products.

B) Processing Plant, Safety, and Regulations

- 1. Fruit Processing Plants and Equipments.
- 3. Fruit Processing Waste Management.
- 4. Microbial Safety and Sanitation of Fruits and Fruit Products.
- 5. Fresh and Processed Fruits: Safety and Regulations.

Practicals:

- 1-2. Preparation of Wine from different fruits. (Grapes, Orange)
- 3. Processing of Citrus Juices. 4. Preparation of Amla Candy.
- 5-7. Production, Processing and Quality of Guava, Mango and Papaya.
- 8. Preparation of Jam and Jellies from different fruits.
- 9. Visit to Fruit cultivated farm.

B.Sc. Third Year Semester –VI

(MCQ + Theory Pattern)

BOTANY

Theory Paper-XI Biochemistry and Bioinformatics

Periods – 45 Maximum Marks – 50

Objectives:

- 1. To understand the biochemical constituents of the plant cell.
- 2. To characterize the biological impacts of different biomolecules on plants
- 3. to learn an understanding of the methods of biochemical analysis.
- 4. To understand the technique sequencing.

UNIT -I: BASIC BIOCHEMISTRY (10 L):

- 1. Introduction of different organic constituents of the cell;
- 2. Introduction and Biological functions of:
 - i. Carbohydrates
 - ii. Lipids
 - iii. Proteins
 - iv. Nucleic acids

3. Importance of essential oils, resins, tannins, alkaloids, organic acids, gums and mucilage.

UNIT -II: MINERAL NUTRITION (12 L):

- 1. Essential elements: Major elements (macro nutrients), trace elements (micro nutrients),
- 2. Physiological role of essential elements (functions and deficiency symptoms). phytosederophores
- 3. Mineral salt absorption: Introduction, mechanism of passive absorption (ion exchange theory), active absorption (carrier concept theory).
- 4. Translocation of organic solutes: Introduction, direction of translocation, mechanism of translocation (Munch hypothesis, protoplasmic streaming theory)

UNIT – III: ENZYMOLOGY (12 L):

- 1. Introduction, nomenclature and classification (IUB).
- 2. Properties of enzymes.
- 3. Mechanism of mode of enzyme action (lock and key model, induced fit model)
- 4. Factors affecting enzyme activity
- 5. Concept of holoenzyme, apoenzyme, co-enzymes and co-factors.
- 6. Abzyme
- 7. Ribozyme

UNIT – IV BIOINFORMATICS (11L):

- 1. Introduction
- 2. History
- 3. Biological Databases
 - i. protein databases
 - ii. Nucleic acid databases
- 4. Bioinformatics applications

SUGGESTED READINGS:

- 1. Gill P.S. (2000) Plant Physiology, S.Chand & Co. New Delhi
- 2. Verma V. (1995) Text book of Plant Physiology, Emkay Publication N.Delhi
- 3. Salisbury P.B. & W. Ross (1992) Plant Physiology, New York Pub. Co. California

USA

- 4. Subhash Chandra Dutta (1992) Plant Physiology, Wiley Eastern, New Delhi
- 5. Shrivastava H.S.(2000) Plant Physiology, Rastogi Publication, Meerut
- 6. Shrivastava H.S. (1993) Elements of Biochemistry Rastogi Publication, Meerut
- 7. Rastogi (2000) Biochemistry Tata McGraw Hill, New York
- 8.Biochemistry by Mathews C.F. (2003) Addison Wesley, New Delhi
- 9. Jayaraman J. (1992) Laboratory Manual in Biochemistry, Wiley Eastern Ltd., New Delhi
- 10. Bioinformatics Methods and Applications, R.S.Rastogi, Namita Mendiratta, P. Rastogi, PHI pvt.LTD.

B.Sc. Third Year Semester – VI

(MCQ + Theory Pattern)

BOTANY

Theory Paper-XII Plant pathology –II

Periods – 45 Maximum Marks – 50

Objectives:

- 1. To understand the aerobiology as a science and its applications
- 2. To know the sampling techniques used in aerobiology.
- 3. To learn identification of selected pollen and fungal spores.
- 4. To know the relationships between aerobiology and human health.
- 5. To understand strategies for identifying and detecting plant pests and pathogens.
- 6. To identify major challenges associated with preventing and managing different types of pathogens and pests.
- 7. To understand principles of plant disease control.
- 8. To study the seed borne pathogens and the techniques of their detection.

UNIT-I: AEROBIOLOGY AND SEED PATHOLOGY (10 L)

- 1. Aerobiology- Definition, scope and importance
- 2. Disease forecasting.
- 3. Seed pathology-Definition,
 - i. Seed borne pathogens (external and internal).
 - ii. Detection of seed borne pathogens by blotter paper and agar plate methods.
 - iii. Seed treatment (hot water, solar, chemical,)
 - iv. Seed certification

UNIT-III: PLANT DISEASES-I (12 L)

Symptoms, causal organisms, disease cycle and control measures of

- 1. Tikka disease of groundnut,
- 2. White rust of Mustard,
- 3. Loose smut of Wheat.
- 4. Rust of Jowar,

- 5. Grain smut of Jowar,
- 6. Leaf curl of tomato

UNIT-IV: PLANT DISEASES-II (13L)

Symptoms, causal organisms, disease cycle and control measures of

- 1. Downy mildew of Grape,
- 2. Stem rust of Wheat,
- 3. Wilt of Tur,
- 4. late blight of Potato,
- 5. Powdery mildew of pea
- 6. Papaya mosaic
- 7. Root Knot of vegetables

UNIT -IV: DEFENCE MECHANISM AND PLANT DISEASE MANAGEMENT (10 L)

- 1. Structural defense (pre existing and post infectional)
- 2. Biochemical defense- pre existing and postinfectional (phytoalexins)
- 3. Exclusion and eradication,
- 4. Chemical control-General account of Sulphur, Copper, systemic fungicides and antibiotics.
- 5. Integrated pest management
- 6. Biological control

SUGGESTED READINGS:

- 1.Pathak, Khatri, Pathak, 2003, Fundamentals of plant pathology, Agrbios
- **2. Mehrotra, R.S.** 1991, *Plant Pathology*, Tata Mc Graw Hill Co.Delhi
- **3. Chattergee, P.B.,** 1997, *Plant Protection Techniques*, Bharati Bhawan, Publ. Patana
- **4. Agrios, G.N.** 2006-*Plant Pathology*, Elsevier Academic Press.
- **5. Pandey, B.P.**2009, *Plant Pathology*, S.Chand Co.
- **6. Dickinson, M.**2008,-*Molecular Plant Pathology*, Bios Scientific Publishers, London
- **7. Trigiano, Windham and Windham,** 2003, *Plant pathology*, *Concepts and laboratory exercises*. CRC Press London
- **8. Gupta, G.P.,**2004, *Text book of plant diseases*, Discovery Publ. House, New, Delhi
- **9.** Aneja, K.R. 2001, Experiments in Microbiology, plant pathology, tissue culture and Mushroom production technology, New Age International Publishers.
- 10. Dubey, R.C., Maheshwari, D.K. 2005, Practical Micrbiology, S. Chand & CO.
- 11. Singh, R.S. 2004, *Plant Diseases*, Oxford & IBH Publishing Co. Pvt. Ltd., Delhi.
- **12.** Rangaswami, G., Mahadevan, A., 2002, *Diseases of Crop plants of India*, Prantice Hall of India.

B.Sc. Third Year Semester – VI

(MCQ + Theory Pattern)

BOTANY Theory Paper-XII CYTOGENETIC (DSE)

Periods – 45 Maximum Marks – 50

Objectives:

- 1. To understand the cell structure, function and different aspects of cytogenetical studies.
- 2. To study importance of plants and inculcate the importance of farming based
- 3. To reveal the different aspects of plant breeding.
- 4. To provide platform to develop the investigation abilities by using biological tools.
- 5. To provide training in scientific and transferable skills through modular lecture courses.
- 6. To provide basic knowledge to be able to sustain in upcoming green revolution.

Credit: I (12L)

- 1. Cell division: Mitosis and Meiosis.
- 2 .Concept of Gene: Allele, Multiple allele, Pseudoallele, Complementation test.
- 3. Mendelian Principles: Dominance, Segregation and Independent assortment.
- 4. Extensions of Mendelian Principles: Codominance, Incomplete dominance, Gene interaction, Pleiotropy, Genomic imprinting, Penetrance, Expressivity and Phenocopy.

Credit II: (12L)

- 1. Microbial genetics: Mapping of bacterial genome by interrupted mating.
- 2. Mutation: Types, causes and detection, Mutant types-lethal, Conditional, Biochemical, Gain of function, Loss of function, Germinal vs somatic mutant, Insertional mutagene.
- 3. Linkage and mapping in eukaryotes: Linkage and crossing over, Sex linkage, Sex limited and sex influenced characters. Recombination: homologous and non-homologous includ-ing transposition,

Credit III: (11L)

- 1. Extra chromosomal inheritance: Inheritance of mitochondria and chloroplast genes,
 Maternal inheritance and its effect.
- 2 Quantitative genetics- Introduction to complex traits, Polygenic inheritance. Heritability & its measurement, QTL Mapping.
- 3.Structural alterations of chromosomes: Deletion, Duplication, Inversion, Translocation, Complex translocation heterozygotes, Robertsonian translocations, BA translocations and their genetic implications.
- Numerical alterations of chromosomes: Euploidy and aneuploidy and their genetic implications.

Credit IV: (10L)

- Linkage maps, Lod score for linkage testing, Mapping by 3 point test cross, Mapping by tetrad analysis in Yeast and Neurospora, mapping with molecular markers, Mapping by using somatic cell hybrids, Development of mapping population in plants.
- 2. Karyotypes and genetic disorders.

Selected Readings:

- 1. Atherly, A.G., Girton, J.R. and Mcdonald, J. F. (1999) The science of genetics. Sauders College Pub. Fort Worth USA.
- 2. Burnham, C.R. (1962) Disscussions in cytogenetics. Burgess Pub. Co., Minnesota.
- 3. Hartl, D.L., Jones E.W.(2001). Genetics: Principle and analysis (4th edn) Jones and Barlett Pub., USA.

- 4. Khush, G S (1973) Cytogenetics of Aneuploids. Academic press New York, London.
- 5. Lewin, B. Genes VIII. Oxford, University press. New York, USA.
- 6. Russel, P.J. 1998. Genetics (5th edn). The Benjamin/Cummins Pub. Co., Inc. USA.
- Snustad, D.P. and Simmons, M.J. 2000. Principles of genetics (4th edn). John Wiley and Sons, Inc., USA.
- 8. Freifelder, D. (1987) Microbial Genetics.
- 9. Strickberger, M.W: Genetics (4th edn). Mcmillan Publishing company, New York.
- 10. Griffiths, A.J.F. and Gilbert, W.M (2nd edn). Modern genetic analysis. W.H. Freeman and Company, New york.
- 11. Singh, B.D.(2005). Plant breeding: principles and methods. 7th edn.
- 12. Allard, R.W.(1960). Principles of plant breeding. John Wiley and sons, Inc., New York.
- Chopra, V.L. (2000) Plant breeding: Theory and practice 2nd edn. Oxford & IBH Pub.,
 Co., Ltd. New Delhi.
- 14. Jain, H.K. and Kharwal, M.C.(2003) Plant breeding: Mendelian to molecular Approaches. Navrosa Publishing House Pvt. Ltd., New Delhi.
- 15. Mandal, A.K. Ganguli, P.K., Banergee, S.P. (1991). Advances in Plant breeding. Vol 1 and 2, CBS Pub.& distributors.

B. Sc. Third Year Semester – VI

(MCQ + Theory Pattern) **BOTANY**

SEC -IV: Basics in Horticulture

Credits: 02

Marks: 50 Lectures: 45

.....

Objectives

• To promote the importance of horticulture

- To promote educational and training opportunities and encourage the development in horticulture
- To promote food and ornamental plant production
- To provide employment opportunities, often in rural areas.
- To improve the environment.
- To provide one of the main leisure pursuits gardening

Credit - I

- 1. Definition Horticulture scope and importance of horticultural crops.
- 2. Nutritive value of horticultural crops.
- 3. Division and classification of horticultural crops.

Credit - II

- 1. Definition propagation, merits and demerits and propagation methods.
- 2. Seed propagation merits and demerits.
- 3. Importance of seed treatments, sowing and seedling establishment.

Credit - III

1. Vegetative propagation – merits and demerits.

- 2. Propagation through cuttings merits and demerits.
- 3. Propagation through layering merits and demerits.
- 4. Propagation through grafting merits and demerits.
- 5. Propagation through budding merits and demerits.

Credit - IV

- 1. Protected cultivation Principles and special structure used for propagation.
- 2. Mist chamber and their maintenance.
- 3. Poly house and their maintenance.
- 4. Shade net house and their maintenance.
- 5. Green house and their maintenance.

Practical

- 1. Study of Horticultural tools and implements used for various operations
- 2. Preparation of pot mixture, potting and repotting
- 3. Practicing propagation methods- Cutting and layering
- 4. Practicing propagation method Budding and grafting
- 5. Preparation and use of growth regulators

References:

Kumar, N. 2011, Introduction to Horticulture, Oxford and IBH Publication, New Delhi

B.Sc. Third Year Semester – V BOTANY Lab. Course-VII

(Based on theory paper - IX)

Practicals: Any ten practicals from following

- 1. Effect of temperature on plasma membrane (Beet root) in terms of pigment leaked out.
- **2.** Effect of different organic solvents on plasma membrane (Beet root) in terms of pigment leaked out.
- **3.** Effect of different concentrations of organic Solvent on plasma membrane (Beet root) in terms of pigment leaked out.
- **4.** Separation of the Photosynthetic pigments by paper chromatography
- **5.** Determine the Osmotic Potential of Vacuolar Sap by plasmolysis
- **6.** Determine the water potential of potato tuber.
- 7. Demonstrations of Moll's half leaf experiments (Requirements, procedure, workings)
- **8.** Demonstrations of Kuhne's fermentation tube (Requirements, procedure, workings)
- **9.** Effect of intensity of light on photosynthesis.
- **10.** Effect of different colors of light on photosynthesis.
- **11.** Estimation of chl-a and chl-b from plant leaf extract.
- **12.**Demonstrations of R. Q (Carbohydrate / fat/ proteins)
- **13.**Demonstration of osmosis by potato osmoscope.
- 14-15: Botanical Excursions (one Short excursion and one Long excursion and Visits to laboratories / companies/factory etc

B.Sc. Third Year Semester – V BOTANY

Lab. Course- VIII

(Based on theory paper - X)

Practicals: Any ten practicals from following

- 1. Study of laboratory equipments- Autoclave, Hot air oven, Inoculating chamber, laminar air flow, Air sampler, Incubator, Centrifuge
- 2. Preparation of culture media- PDA, NA
- 3. Micrometry- Calibration of microscope and measurement of fungal spore.
- 4. Effect of pH on growth of pathogens.
- 5-6. Study of symptoms and causal organisms of Leaf spot of tomato and Leaf spot of turmeric
- 7. Study of symptoms and causal organisms of Green ear and Ergot of bajra
- 8. Study of symptoms and causal organism of oil spot disease of pomegarcane
- 9. Study of symptoms and causal organism of Whip smut of sugarcane
- 10. Study of symptoms and causal organism of soybean
- 11.study of symptomology of the Bunchy top of bannan
- 12: stady of symptoms and causal organism of Red rot of sugarcane.
- 13-14: stady of symptoms and causal organisms littale left of brinjal and Citrus canker.
- 15-16:stady of symptoms and causal organisms of Yellow vein mosaic of bhendi and angular left spot of Cotton
- 17-18:Botanical excursions- several local and at least one long excursion.

B.Sc. Third Year Semester – VI BOTANY

Lab. Course-IX

(Based on theory paper - XI)

Practicals: Any ten practicals from following

- 1. Estimation of Starch using colorimeter/ Spectrophotometer from given material.
- **2.** Estimation of Glucose using colorimeter/ Spectrophotometer from given material.
- 3 Estimation of Protein using colorimeter/ Spectrophotometer from given material.
- **4.** Estimate the percentage of oil content in given oilseeds using Soxhlet extractor.
- 5. Identify the amino acids in a mixture and find out the RF value.
- **6.** Study of catalase activity under different pH
- 7. Study of catalase activity under different temperature
- **8.** Micro chemical Carbohydrate (Molisch/Fehlings/Benedict's) Glucose, sucrose, starch, Cellulose, Pectin
- 9. Micro chemical tests for cutin, Latex, Lignin, Tannin Lipid, fats & oils.
- **10.** Micro chemical Test of organic acids Tartaric acid, Citric acid, Oxalic and Malic acid
- 11. Micro chemical Test for proteins (Biuret/ Xanthoproteic/ Millon tests)
- 12. Study of acid phosphatase activity from fruits.

Botanical Excursions (one Short excursion and one Long excursion and Visits to laboratories / companies/factory etc

B.Sc. Third Year Semester – V BOTANY Lab. Course- VIII (DSE)

(Based on theory paper - XII) **CYTOGENETIC**

Practicals: Any ten practicals from following

Periods – 45 Maximum Marks – 50

- 1. Preparation of stains, Fixatives, preservatives and pretreatments to plant material.
- 2. Problems on determination of blood grouping
- 3. Problems based on Multiple alleles.
- 4. Problems based on Gene mapping.
- 5. Problems based on linkage.
- 6.Study of meiotic configuration from suitable plant material.
- 7. Study of chromosomal aberrations in irradiated plant material.
- 8. Study of Polygenic inheritance.
- 9.Problems of Mendelian inheritance and estimation of gene frequencies and heterozygotic frequencies, population genetics and Linkage.
- 10. Neurospora tetrad analysis.
- 11.Linear differentiation of chromosomes through banding techniques such as C-Banding,G-Banding and Q-Banding.
- 12. Floral Biology, study of Pollen Viability, germination in vitro and staining of any two major crops.
- 15.Use of Colchicine for induction of polyploidy in appropriate plant material.

SKELETON OF QUESTION PAPER B.Sc. SecondYear

Semester – V & VI

Theory Paper-IX, X, XI and XII

Time: 1.30 hours	Maximum Marks: 30
Note: (i) Attempt all questions. (ii) Draw neat and well labeled diagrams wherever necessary.	
Q1. Attempt all of the following (Each 3 marks)	12
a) b) c) d)	
Q2. Attept any ONE of the following a) b)	08
Q3. Attept any ONE of the following a) b)	10